IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/828952.html
   My bibliography  Save this article

Periodic Solutions of Certain Differential Equations with Piecewise Constant Argument

Author

Listed:
  • James Guyker

Abstract

Existence criteria are derived for the eventually periodic solutions of a class of differential equations with piecewise constant argument whose solutions at consecutive integers satisfy nonlinear recurrence relations. The proof characterizes the initial values of periodic solutions in terms of the coefficients of the resulting difference equations. Sufficient conditions for the unboundedness, boundedness, and symmetry of general solutions also follow from the corresponding properties of the difference equations.

Suggested Citation

  • James Guyker, 2015. "Periodic Solutions of Certain Differential Equations with Piecewise Constant Argument," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-17, July.
  • Handle: RePEc:hin:jijmms:828952
    DOI: 10.1155/2015/828952
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2015/828952.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2015/828952.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/828952?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. S. M. Shah & Joseph Wiener, 1983. "Advanced differential equations with piecewise constant argument deviations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 6, pages 1-33, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Assanova, Anar T. & Uteshova, Roza, 2022. "Solution of a nonlocal problem for hyperbolic equations with piecewise constant argument of generalized type," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    2. Hartung, Ferenc, 2022. "On numerical approximation of a delay differential equation with impulsive self-support condition," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:828952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.