IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/814587.html
   My bibliography  Save this article

An Enhanced Matrix-Free Secant Method via Predictor-Corrector Modified Line Search Strategies for Solving Systems of Nonlinear Equations

Author

Listed:
  • M. Y. Waziri
  • Z. A. Majid

Abstract

Diagonal updating scheme is among the cheapest Newton-like methods for solving system of nonlinear equations. Nevertheless, the method has some shortcomings. In this paper, we proposed an improved matrix-free secant updating scheme via line search strategies, by using the steps of backtracking in the Armijo-type line search as a step length predictor and Wolfe-Like condition as corrector. Our approach aims at improving the overall performance of diagonal secant updating scheme. Under mild assumptions, the global convergence results have been presented. Numerical experiments verify that the proposed approach is very promising.

Suggested Citation

  • M. Y. Waziri & Z. A. Majid, 2013. "An Enhanced Matrix-Free Secant Method via Predictor-Corrector Modified Line Search Strategies for Solving Systems of Nonlinear Equations," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2013, pages 1-6, February.
  • Handle: RePEc:hin:jijmms:814587
    DOI: 10.1155/2013/814587
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2013/814587.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2013/814587.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/814587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Y. Waziri & W. J. Leong & M. Mamat, 2012. "A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:814587. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.