Author
Listed:
- Kumama Regassa Cheneke
- Koya Purnachandra Rao
- Gereme Kenassa Edesssa
- Harvinder S. Sidhu
Abstract
In this study, the co-infection of HIV and cholera model has been developed and analyzed. The new fractional-order derivative is applied and the behavior of the solution is interpreted. The order of new generalized fractional-order derivative implication is presented. A new method is incorporated to determine the forward bifurcation at a threshold  R0=1. The developed method is used to determine the stability of steady-state points. The full model and the submodels’ disease-free equilibrium are locally asymptotically stable if the corresponding reproduction number is less than one and unstable if the production number is greater than one. The only HIV model exhibits forward bifurcation at the threshold point,  R0=1. The numerical simulations solutions obtained using a new generalized fractional-order derivative shows that the total human population size approaches the disease-free equilibrium if the order of the fractional derivative is higher. Also, the simulated results show that the memory effects toward the invading disease are less whenever the order of the fractional derivative is near 0 but higher whenever the order of the fractional derivative is near 1. Furthermore, V. cholerae concentration in the environment increases whenever the intrinsic growth rate increases. The numerical solutions are carried out using MATLAB software.
Suggested Citation
Kumama Regassa Cheneke & Koya Purnachandra Rao & Gereme Kenassa Edesssa & Harvinder S. Sidhu, 2022.
"A New Generalized Fractional-Order Derivative and Bifurcation Analysis of Cholera and Human Immunodeficiency Co-Infection Dynamic Transmission,"
International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2022, pages 1-15, February.
Handle:
RePEc:hin:jijmms:7965145
DOI: 10.1155/2022/7965145
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:7965145. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.