IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/793848.html
   My bibliography  Save this article

The Bolzano-Poincaré Type Theorems

Author

Listed:
  • Przemysław Tkacz
  • Marian Turzański

Abstract

In 1883–1884, Henri Poincaré announced the result about the structure of the set of zeros of function ð ‘“ ∶ ð ¼ ð ‘› → ð ‘… ð ‘› , or alternatively the existence of solutions of the equation ð ‘“ ( ð ‘¥ ) = 0 . In the case ð ‘› = 1 the Poincaré Theorem is well known Bolzano Theorem. In 1940 Miranda rediscovered the Poincaré Theorem. Except for few isolated results it is essentially a non-algorithmic theory. The aim of this article is to introduce an algorithmical proof of the Theorem “On the existence of a chain” and for ð ‘› = 3 an algorithmical proof of the Bolzano-Poincaré Theorem and to show the equivalence of Poincaré, Brouwer and “On the existence of a chain” theorems.

Suggested Citation

  • Przemysław Tkacz & Marian Turzański, 2011. "The Bolzano-Poincaré Type Theorems," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2011, pages 1-9, October.
  • Handle: RePEc:hin:jijmms:793848
    DOI: 10.1155/2011/793848
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2011/793848.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2011/793848.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2011/793848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:793848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.