IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/736367.html
   My bibliography  Save this article

Generalized Altering Distances and Common Fixed Points in Ordered Metric Spaces

Author

Listed:
  • Hemant Kumar Nashine
  • Hassen Aydi

Abstract

Coincidence point and common fixed point results with the concept of generalized altering distance functions in complete ordered metric spaces are derived. These results generalize the existing fixed point results in the literature. To illustrate our results and to distinguish them from the existing ones, we equip the paper with examples. As an application, we study the existence of a common solution to a system of integral equations.

Suggested Citation

  • Hemant Kumar Nashine & Hassen Aydi, 2012. "Generalized Altering Distances and Common Fixed Points in Ordered Metric Spaces," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-23, July.
  • Handle: RePEc:hin:jijmms:736367
    DOI: 10.1155/2012/736367
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/736367.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2012/736367.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2012/736367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Abbas & M. Ali Khan, 2009. "Common Fixed Point Theorem of Two Mappings Satisfying a Generalized Weak Contractive Condition," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2009, pages 1-9, December.
    2. Gerald Jungck, 1986. "Compatible mappings and common fixed points," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 9, pages 1-9, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budi Nurwahyu, 2019. "Common Fixed Point Theorems on Generalized Ratio Contraction Mapping in Extended Rectangular b -Metric Spaces," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2019, pages 1-14, December.
    2. Rqeeb Gubran & Mohammad Imdad, 2016. "Results on Coincidence and Common Fixed Points for (ψ,φ) g -Generalized Weakly Contractive Mappings in Ordered Metric Spaces," Mathematics, MDPI, vol. 4(4), pages 1-13, December.
    3. Cho, Yeol Je & Sedghi, Shaban & Shobe, Nabi, 2009. "Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2233-2244.
    4. J. R. Morales & E. M. Rojas, 2012. "Some Generalizations of Jungck's Fixed Point Theorem," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-19, November.
    5. Muhammad Shoaib & Muhammad Sarwar, 2016. "Multivalued Fixed Point Theorems for Generalized Contractions and Their Applications," Journal of Mathematics, Hindawi, vol. 2016, pages 1-8, October.
    6. Zoran D. Mitrović & Hassen Aydi & Nawab Hussain & Aiman Mukheimer, 2019. "Reich, Jungck, and Berinde Common Fixed Point Results on ℱ-Metric Spaces and an Application," Mathematics, MDPI, vol. 7(5), pages 1-10, April.
    7. Deshpande, Bhavana, 2009. "Fixed point and (DS)-weak commutativity condition in intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2722-2728.
    8. Mohammad Imdad & Sunny Chauhan, 2013. "Employing Common Limit Range Property to Prove Unified Metrical Common Fixed Point Theorems," International Journal of Analysis, Hindawi, vol. 2013, pages 1-10, May.
    9. Erdal Karapınar & Ravi P. Agarwal & Seher Sultan Yeşilkaya & Chao Wang, 2022. "Fixed-Point Results for Meir–Keeler Type Contractions in Partial Metric Spaces: A Survey," Mathematics, MDPI, vol. 10(17), pages 1-76, August.
    10. Xiaolan Liu & Mi Zhou & Arslan Hojat Ansari & Naeem Saleem & Mukesh Kumar Jain, 2023. "Fixed Point Results for Hybrid Rational Contractions under a New Compatible Condition with an Application," Mathematics, MDPI, vol. 12(1), pages 1-16, December.
    11. Piyachat Borisut & Poom Kumam & Vishal Gupta & Naveen Mani, 2019. "Generalized ( ψ , α , β )—Weak Contractions for Initial Value Problems," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    12. Zoran D. Mitrović & Abasalt Bodaghi & Ahmad Aloqaily & Nabil Mlaiki & Reny George, 2023. "New Versions of Some Results on Fixed Points in b -Metric Spaces," Mathematics, MDPI, vol. 11(5), pages 1-9, February.
    13. Nesrin Manav Tatar & Ravi P. Agarwal, 2023. "Best Approximation of Fixed-Point Results for Branciari Contraction of Integral Type on Generalized Modular Metric Space," Mathematics, MDPI, vol. 11(21), pages 1-15, October.
    14. Sharma, Sushil & Deshpande, Bhavana, 2009. "Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2242-2256.
    15. Ghosh, S.K. & Nahak, C., 2020. "An extension of Lakzian-Rhoades results in the structure of ordered b-metric spaces via wt-distance with an application," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    16. Watchareepan Atiponrat & Pariwate Varnakovida & Pharunyou Chanthorn & Teeranush Suebcharoen & Phakdi Charoensawan, 2023. "Common Fixed Point Theorems for Novel Admissible Contraction with Applications in Fractional and Ordinary Differential Equations," Mathematics, MDPI, vol. 11(15), pages 1-20, August.
    17. R. K. Bisht, 2012. "Common Fixed Points of Generalized Meir-Keeler Type Condition and Nonexpansive Mappings," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-12, July.
    18. Abd EL-Monsef, M.E. & Abu-Donia, H.M. & Abd-Rabou, Kh., 2009. "New types of common fixed point theorems in 2-metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1435-1441.
    19. Pooja Dhawan & Jatinderdeep Kaur, 2019. "Some Common Fixed Point Theorems in Ordered Partial Metric Spaces via ℱ-Generalized Contractive Type Mappings," Mathematics, MDPI, vol. 7(2), pages 1-11, February.
    20. Rale M. Nikolić & Rajandra P. Pant & Vladimir T. Ristić & Aleksandar Šebeković, 2022. "Common Fixed Points Theorems for Self-Mappings in Menger PM-Spaces," Mathematics, MDPI, vol. 10(14), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:736367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.