IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/714318.html
   My bibliography  Save this article

Remarques sur la frontière de martin biharmonique et la représentation intégrale des fonctions biharmoniques

Author

Listed:
  • Mohamed El Kadiri
  • Sabah Haddad

Abstract

Soit ( Ω , ℋ ) un espace biharmonique fort au sens de Smyrnelis dont les espaces harmoniques associés sont des espaces de Brelot qui vérifient l'axiome de proportionnalité. On montre que s'il existe un couple ℋ -harmonique > 0 sur Ω , alors lénsemble des points minimaux de la frontière de Martin biharmonique de Ω qui ne sont pas les pôles de couples biharmoniques minimaux est négiligeable dans un sens que l'on précisera. Dans le cas classique d'un domaine lipschitzien borné de ℝ n , nous montrons que cet ensemble est vide. Let ( Ω , ℋ ) be a strong biharmonic space of Smyrnelis such that the harmonic spaces associeted are Brelot spaces satisfying the axiom of proportionnality. We prove that if there exists a biharmonic pair greater than 0 on Ω , then the set of minimal points of the biharmonic Martin boundary of Ω , that are not the poles of minimal biharmonic pairs, is negligible in some meaning that we will precise. For the classical case of a bounded Lipschitz domain of ℝ n , we prove that this set is empty.

Suggested Citation

  • Mohamed El Kadiri & Sabah Haddad, 2005. "Remarques sur la frontière de martin biharmonique et la représentation intégrale des fonctions biharmoniques," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-12, January.
  • Handle: RePEc:hin:jijmms:714318
    DOI: 10.1155/IJMMS.2005.1461
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2005/714318.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2005/714318.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/IJMMS.2005.1461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:714318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.