IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/708257.html
   My bibliography  Save this article

On Fréchet theorem in the set of measure preserving functions over the unit interval

Author

Listed:
  • So-Hsiang Chou
  • Truc T. Nguyen

Abstract

In this paper, we study the Fréchet theorem in the set of measure preserving functions over the unit interval and show that any measure preserving function on [ 0 , 1 ] can be approximated by a sequence of measure preserving piecewise linear continuous functions almost everywhere. Some application is included.

Suggested Citation

  • So-Hsiang Chou & Truc T. Nguyen, 1990. "On Fréchet theorem in the set of measure preserving functions over the unit interval," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 13, pages 1-6, January.
  • Handle: RePEc:hin:jijmms:708257
    DOI: 10.1155/S0161171290000552
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/13/708257.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/13/708257.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S0161171290000552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Fernández Sánchez & Wolfgang Trutschnig, 2015. "Conditioning-based metrics on the space of multivariate copulas and their interrelation with uniform and levelwise convergence and Iterated Function Systems," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1311-1336, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:708257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.