IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/4795841.html
   My bibliography  Save this article

Forecasting Temperature Time Series Data Using Combined Statistical and Deep Learning Methods: A Case Study of Nairobi County Daily Temperature

Author

Listed:
  • John Kamwele Mutinda
  • Amos Kipkorir Langat
  • Samuel Musili Mwalili

Abstract

Accurate temperature forecasting is of paramount importance across various sectors, influencing decision-making processes and impacting numerous aspects of daily life. This study analyzes temperature time series data from the Nairobi County in Kenya, aiming to develop accurate hybrid time series forecasting models. Initial statistical tests revealed significant nonstationarity and nonlinearity in the data, prompting the adoption of specialized modeling techniques. Using variational mode decomposition (VMD), the raw time series was decomposed into interpretable components, enhancing feature representation and understanding of temperature dynamics. Hybrid forecasting models were then constructed by integrating VMD with both statistical (autoregressive integrated moving average [ARIMA]) and deep learning (gated recurrent unit [GRU], long short-term memory [LSTM], and Transformer) architectures. Evaluation metrics, including root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R-squared, highlighted the superiority of hybrid models over individual approaches, particularly those combining VMD with ARIMA, GRU, LSTM, and Transformer. The experimental results for temperature prediction show that the hybrid models combining VMD with statistical and deep learning networks achieved improved forecasting accuracy compared with baseline models. Specifically, the VMD–ARIMA–GRU model emerged as the top performer, demonstrating the lowest error metrics and highest explanatory power. With a low RMSE of 0.710090, MAE of 0.561726, and MAPE of 2.808193%, the model demonstrates remarkable accuracy in predicting temperature values. In addition, the high R-squared value of 0.779234 indicates that approximately 77.92% of the variance in the observed data is explained by the model, showcasing its robustness and effectiveness in capturing the underlying patterns in temperature time series data. Overall, this study underscores the importance of VMD in preprocessing data to enhance feature representation and forecasting accuracy. By combining statistical and deep learning methods, hybrid models incorporating VMD offer a comprehensive solution for accurate temperature prediction, with implications for climate modeling and environmental monitoring.

Suggested Citation

  • John Kamwele Mutinda & Amos Kipkorir Langat & Samuel Musili Mwalili, 2025. "Forecasting Temperature Time Series Data Using Combined Statistical and Deep Learning Methods: A Case Study of Nairobi County Daily Temperature," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2025, pages 1-20, March.
  • Handle: RePEc:hin:jijmms:4795841
    DOI: 10.1155/ijmm/4795841
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ijmms/2025/4795841.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ijmms/2025/4795841.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/ijmm/4795841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:4795841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.