IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/382948.html
   My bibliography  Save this article

Order Statistics and Benford's Law

Author

Listed:
  • Steven J. Miller
  • Mark J. Nigrini

Abstract

Fix a base and let have the standard exponential distribution; the distribution of digits of base is known to be very close to Benford's law. If there exists a such that the distribution of digits of times the elements of some set is the same as that of , we say that set exhibits shifted exponential behavior base Let be i.i.d.r.v. If the 's are Unif, then as the distribution of the digits of the differences between adjacent order statistics converges to shifted exponential behavior. If instead 's come from a compactly supported distribution with uniformly bounded first and second derivatives and a second-order Taylor series expansion at each point, then the distribution of digits of any consecutive differences and all normalized differences of the order statistics exhibit shifted exponential behavior. We derive conditions on the probability density which determine whether or not the distribution of the digits of all the unnormalized differences converges to Benford's law, shifted exponential behavior, or oscillates between the two, and show that the Pareto distribution leads to oscillating behavior.

Suggested Citation

  • Steven J. Miller & Mark J. Nigrini, 2008. "Order Statistics and Benford's Law," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2008, pages 1-19, December.
  • Handle: RePEc:hin:jijmms:382948
    DOI: 10.1155/2008/382948
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2008/382948.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2008/382948.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2008/382948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Don Lemons & Nathan Lemons & William Peter, 2021. "First Digit Oscillations," Stats, MDPI, vol. 4(3), pages 1-7, July.
    2. Katherine M. Anderson & Kevin Dayaratna & Drew Gonshorowski & Steven J. Miller, 2022. "A New Benford Test for Clustered Data with Applications to American Elections," Stats, MDPI, vol. 5(3), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:382948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.