IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/303787.html
   My bibliography  Save this article

Statistical applications for equivariant matrices

Author

Listed:
  • S. H. Alkarni

Abstract

Solving linear system of equations A x = b enters into many scientific applications. In this paper, we consider a special kind of linear systems, the matrix A is an equivariant matrix with respect to a finite group of permutations. Examples of this kind are special Toeplitz matrices, circulant matrices, and others. The equivariance property of A may be used to reduce the cost of computation for solving linear systems. We will show that the quadratic form is invariant with respect to a permutation matrix. This helps to know the multiplicity of eigenvalues of a matrix and yields corresponding eigenvectors at a low computational cost. Applications for such systems from the area of statistics will be presented. These include Fourier transforms on a symmetric group as part of statistical analysis of rankings in an election, spectral analysis in stationary processes, prediction of stationary processes and Yule-Walker equations and parameter estimation for autoregressive processes.

Suggested Citation

  • S. H. Alkarni, 2001. "Statistical applications for equivariant matrices," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 25, pages 1-9, January.
  • Handle: RePEc:hin:jijmms:303787
    DOI: 10.1155/S016117120100446X
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/25/303787.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/25/303787.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/S016117120100446X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:303787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.