IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/235806.html
   My bibliography  Save this article

Some Relations between Admissible Monomials for the Polynomial Algebra

Author

Listed:
  • Mbakiso Fix Mothebe
  • Lafras Uys

Abstract

Let be the polynomial algebra in variables , of degree one, over the field of two elements. The mod-2 Steenrod algebra acts on according to well known rules. A major problem in algebraic topology is of determining , the image of the action of the positively graded part of . We are interested in the related problem of determining a basis for the quotient vector space . has been explicitly calculated for but problems remain for . Both and are graded, where denotes the set of homogeneous polynomials of degree . In this paper, we show that if is an admissible monomial (i.e., meets a criterion to be in a certain basis for ), then, for any pair of integers ( ), , and , the monomial is admissible. As an application we consider a few cases when .

Suggested Citation

  • Mbakiso Fix Mothebe & Lafras Uys, 2015. "Some Relations between Admissible Monomials for the Polynomial Algebra," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2015, pages 1-7, August.
  • Handle: RePEc:hin:jijmms:235806
    DOI: 10.1155/2015/235806
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2015/235806.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2015/235806.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/235806?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:235806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.