IDEAS home Printed from https://ideas.repec.org/a/hin/jijmms/201452.html
   My bibliography  Save this article

Sur la théorie spectrale locale des shifts à poids opérateurs

Author

Listed:
  • Mohamed Houimdi
  • Hassane Zguitti

Abstract

Nous étudions les propriétés spectrales locales du shift unilateral à poids opérateurs. Nous donnons une condition nécessaire et suffisante pour que l'adjoint satisfasse la propriété de l'extension unique (SVEP). Une condition suffisante pour satisfaire la propriété de Dunford ( C ) ainsi qu'une condition nécessaire pour satisfaire la condition de Bishop ( β ) seront données. Enfin, nous montrons que le shift à poids opérateurs est décomposable si, et seulement si, il est quasinilpotent. We study the local spectral properties for the unilateral shift with operator-valued weights. We give necessary and sufficient conditions for the adjoint to satisfy the SVEP. Sufficient condition to satisfy Dunford's property ( C ) and necessary condition to satisfy Bishop's condition ( β ) are given. Finally we show that the unilateral shift with operator-valued weights is decomposable if and only if it is quasinilpotent.

Suggested Citation

  • Mohamed Houimdi & Hassane Zguitti, 2005. "Sur la théorie spectrale locale des shifts à poids opérateurs," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-13, January.
  • Handle: RePEc:hin:jijmms:201452
    DOI: 10.1155/IJMMS.2005.3497
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJMMS/2005/201452.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJMMS/2005/201452.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/IJMMS.2005.3497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jijmms:201452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.