IDEAS home Printed from https://ideas.repec.org/a/hin/ijanal/586096.html
   My bibliography  Save this article

Coupled Fixed Point Theorems for ( )-Contractive Mixed Monotone Mappings in Partially Ordered Metric Spaces and Applications

Author

Listed:
  • Manish Jain
  • Neetu Gupta
  • Sanjay Kumar

Abstract

The object of this paper is to establish the existence and uniqueness of coupled fixed points under a ( , )-contractive condition for mixed monotone operators in the setup of partially ordered metric spaces. Presented work generalizes the recent results of Berinde (2011, 2012) and weakens the contractive conditions involved in the well-known results of Bhaskar and Lakshmikantham (2006), and Luong and Thuan (2011). The effectiveness of our work is validated with the help of a suitable example. As an application, we give a result of existence and uniqueness for the solutions of a class of nonlinear integral equations.

Suggested Citation

  • Manish Jain & Neetu Gupta & Sanjay Kumar, 2014. "Coupled Fixed Point Theorems for ( )-Contractive Mixed Monotone Mappings in Partially Ordered Metric Spaces and Applications," International Journal of Analysis, Hindawi, vol. 2014, pages 1-9, March.
  • Handle: RePEc:hin:ijanal:586096
    DOI: 10.1155/2014/586096
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2014/586096.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/ANALYSIS/2014/586096.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2014/586096?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Branciari, 2002. "A fixed point theorem for mappings satisfying a general contractive condition of integral type," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 29, pages 1-6, January.
    2. Manish Jain & Kenan Tas & Sanjay Kumar & Neetu Gupta, 2012. "Coupled Fixed Point Theorems for a Pair of Weakly Compatible Maps along with CLRg Property in Fuzzy Metric Spaces," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-13, August.
    3. Tomonari Suzuki, 2007. "Meir-Keeler Contractions of Integral Type Are Still Meir-Keeler Contractions," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2007, pages 1-6, December.
    4. Manish Jain & Kenan Taş, 2013. "A Unique Coupled Common Fixed Point Theorem for Symmetric -Contractive Mappings in Ordered -Metric Spaces with Applications," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jain, Manish & Atangana, Abdon, 2024. "3-Dimensional computational analysis of ϕ-contraction in GV-fuzzy metric spaces with applications," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samet, Bessem & Vetro, Calogero, 2011. "Berinde mappings in orbitally complete metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 44(12), pages 1075-1079.
    2. J. R. Morales & E. M. Rojas, 2012. "Some Generalizations of Jungck's Fixed Point Theorem," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-19, November.
    3. Shatanawi, Wasfi, 2012. "Some fixed point results for a generalized ψ-weak contraction mappings in orbitally metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 45(4), pages 520-526.
    4. Muhammad Shoaib & Muhammad Sarwar & Sultan Hussain & Gohar Ali, 2017. "Existence and Uniqueness of Common Fixed Point for Mappings Satisfying Integral Type Contractive Conditions in G-Metric Spaces," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 1(1), pages 1-8, January.
    5. Jain, Manish & Atangana, Abdon, 2024. "3-Dimensional computational analysis of ϕ-contraction in GV-fuzzy metric spaces with applications," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    6. Nesrin Manav Tatar & Ravi P. Agarwal, 2023. "Best Approximation of Fixed-Point Results for Branciari Contraction of Integral Type on Generalized Modular Metric Space," Mathematics, MDPI, vol. 11(21), pages 1-15, October.
    7. Mustafa Mudhesh & Aftab Hussain & Muhammad Arshad & Hamed Alsulami, 2023. "A Contemporary Approach of Integral Khan-Type Multivalued Contractions with Generalized Dynamic Process and an Application," Mathematics, MDPI, vol. 11(20), pages 1-18, October.
    8. Kobkoon Janngam & Suthep Suantai, 2022. "An Inertial Modified S-Algorithm for Convex Minimization Problems with Directed Graphs and Its Applications in Classification Problems," Mathematics, MDPI, vol. 10(23), pages 1-15, November.
    9. Ghosh, S.K. & Nahak, C., 2020. "An extension of Lakzian-Rhoades results in the structure of ordered b-metric spaces via wt-distance with an application," Applied Mathematics and Computation, Elsevier, vol. 378(C).
    10. Vishal Gupta & Wasfi Shatanawi & Ashima Kanwar, 2020. "Coupled Fixed Point Theorems Employing CLR-Property on V -Fuzzy Metric Spaces," Mathematics, MDPI, vol. 8(3), pages 1-9, March.
    11. Mian Bahadur Zada & Muhammad Sarwar & Nayyar Mehmood, 2016. "Common Fixed Point Results for Six Mappings via Integral Contractions with Applications," International Journal of Analysis, Hindawi, vol. 2016, pages 1-13, October.
    12. Biljana Carić & Tatjana Došenović & Reny George & Zoran D. Mitrović & Stojan Radenović, 2021. "On Jungck–Branciari–Wardowski Type Fixed Point Results," Mathematics, MDPI, vol. 9(2), pages 1-11, January.
    13. Lakzian, Hossein & Rhoades, B.E., 2019. "Some fixed point theorems using weaker Meir–Keeler function in metric spaces with w−distance," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 18-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:ijanal:586096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.