Author
Listed:
- Qing An
- Xijiang Chen
- Shusen Wu
- Dan SeliÅŸteanu
Abstract
The traditional image stitching method has some shortcomings such as double shadow, chromatic aberration, and stitching. In view of this, this paper proposes a power function-weighted image stitching method that combines SURF optimization and improved cell acceleration. First, the method uses the cosine similarity to preliminarily judge the similarity of the feature points and then uses the two-way consistency mutual selection to filter the feature point pairs again. Simultaneously, some incorrect matching points in the reverse matching are eliminated. Finally, the method uses the MSAC algorithm to perform fine matching. Then, the power function-weighted fusion algorithm is used to calculate the weight of the center point. The power function weight of the accelerated cell is used to perform the final image fusion. The experimental results show that the matching accuracy rate of the proposed method is about 11 percentage points higher than the traditional SURF algorithm, and the time is reduced by about 1.6 s. In the image fusion stage, this paper first selects images with different brightness, angles, resolutions, and scales to verify the effectiveness of the proposed method. The results show that the proposed method effectively solves the ghosting and stitching seams. Comparing with the traditional fusion algorithm, the time consumption is reduced by at least 2 s, the mean square error is reduced by about 1.32%∼1.48%, and the information entropy is improved by about 0.98%∼1.70%. The proposed method has better performance in matching accuracy and fusion effect and has better stitching quality.
Suggested Citation
Qing An & Xijiang Chen & Shusen Wu & Dan SeliÅŸteanu, 2021.
"A Novel Fast Image Stitching Method Based on the Combination of SURF and Cell,"
Complexity, Hindawi, vol. 2021, pages 1-14, June.
Handle:
RePEc:hin:complx:9995030
DOI: 10.1155/2021/9995030
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9995030. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.