Author
Listed:
- Changliang Xu
- Zhong Yang
- Hao Xu
- Qiuyan Zhang
- Dongsheng Zhou
- Kaiwen Lu
- Jiaming Han
- Luwei Liao
- Huihua Chen
Abstract
Obstacles of some trees within the electric power transmission line channel are of great threat to the electricity supply. Nowadays, the tasks of clearing threatening tree branches are still mostly operated by hand and simple tools. In this article, an aerial tree-pruning robot with a novel structure is designed to improve the pruning operation efficiency and enhance the safety of the staff. However, the long arm of the pruning tool results in much higher rotational inertia of the robot, which brings difficulties for the robot to remain stable. Therefore, a control scheme based on model predictive control is proposed for the aerial tree-pruning robot and to deal with an uncertain system during the pruning operation period. One of the main contributions is that an ADMM (alternating direction method of multipliers) algorithm that solves the constrained QP (quadratic programming) is adopted to implement the model predictive control on embedded computers with limited computational power. The dynamic model of the pruning robot is firstly presented. Then, the control scheme of MPC for the pruning robot is presented. Moreover, the QP problem of robot control is addressed with ADMM. Finally, simulation experiments of attitude tracking as well as the antidisturbances capability verification have been conducted. Results for the system of aerial tree-pruning robot are given to demonstrate the effectiveness of the developed attitude tracking control scheme using ADMM-based MPC.
Suggested Citation
Changliang Xu & Zhong Yang & Hao Xu & Qiuyan Zhang & Dongsheng Zhou & Kaiwen Lu & Jiaming Han & Luwei Liao & Huihua Chen, 2021.
"Model Predictive Control for an Aerial Tree-Pruning Robot Based on Alternating Direction Method of Multipliers,"
Complexity, Hindawi, vol. 2021, pages 1-12, June.
Handle:
RePEc:hin:complx:9981123
DOI: 10.1155/2021/9981123
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9981123. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.