Author
Abstract
In this paper, we propose an adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis and prediction through the study and analysis of sports videos. The features with more discriminative power are selected from the set of positive and negative templates using a feature selection mechanism, and a sparse discriminative model is constructed by combining a confidence value metric strategy. The sparse generative model is constructed by combining L1 regularization and subspace representation, which retains sufficient representational power while dealing with outliers. To overcome the shortcomings of the traditional multiplicative fusion mechanism, this paper proposes an adaptive selection mechanism based on Euclidean distance, which aims to detect deteriorating models in time during the dynamic tracking process and adopt corresponding strategies to construct more reasonable likelihood functions. Based on the Bayesian citation framework, the adaptive selection mechanism is used to combine the sparse discriminative model and the sparse generative model. Also, different online updating strategies are adopted for the template set and Principal Component Analysis (PCA) subspace to alleviate the drift problem while ensuring that the algorithm can adapt to the changes of target appearance in the dynamic tracking environment. Through quantitative and qualitative evaluation of the experimental results, it is verified that the algorithm proposed in this paper has stronger robustness compared with other classical algorithms. Our proposed visual object tracking algorithm not only outperforms existing visual object tracking algorithms in terms of accuracy, success rate, accuracy, and robustness but also achieve the performance required for real-time tracking in terms of execution speed on the central processing unit (CPU). This paper provides an in-depth analysis and discussion of the adaptive Gaussian incremental expectation stadium parameter estimation algorithm for sports video analysis. Using a variety of county-level algorithms for analysis and multiple solutions to improve the accuracy of the results, we obtain a more efficient and accurate algorithm.
Suggested Citation
Lizhi Geng & Zhihan Lv, 2021.
"Adaptive Gaussian Incremental Expectation Stadium Parameter Estimation Algorithm for Sports Video Analysis,"
Complexity, Hindawi, vol. 2021, pages 1-10, May.
Handle:
RePEc:hin:complx:9963246
DOI: 10.1155/2021/9963246
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9963246. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.