IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9961864.html
   My bibliography  Save this article

Brain Model Based on the Canonical Ensemble with Functional MRI: A Thermodynamic Exploration of the Neural System

Author

Listed:
  • Chenxi Zhou
  • Bin Yang
  • Wenliang Fan
  • Wei Li
  • Danilo Comminiello

Abstract

Objective. System modeling is an important method to study the working mechanisms of the brain. This study attempted to build a model of the brain from the perspective of thermodynamics at the system level, which brought a new perspective to brain modeling. Approach. Regarding brain regions as systems, voxels as particles, and intensity of signals as energy of particles, the thermodynamic model of the brain was built based on the canonical ensemble theory. Two pairs of activated regions and two pairs of inactivated brain regions were selected for comparison in this study, and the thermodynamic properties based on the proposed model were analyzed. In addition, the thermodynamic properties were extracted as input features for the detection of Alzheimer’s disease. Main Results. The experimental results verified the assumption that the brain follows thermodynamic laws. This demonstrated the feasibility and rationality of the proposed brain thermodynamic modeling method, indicating that thermodynamic parameters drawn from our model can be applied to describe the state of the neural system. Meanwhile, the brain thermodynamic model achieved good accuracy in the detection of Alzheimer’s disease, suggesting the potential application of thermodynamic models in auxiliary diagnosis. Significance. (1) In the previous studies, only some thermodynamic parameters in physics were analogized and applied to brain image analysis, while, in this study, a complete system model of the brain was proposed through the principles of thermodynamics. And, based on the neural system models proposed, thermodynamic parameters were obtained to describe the observation and evolution of the neural system. (2) Based on the proposed thermodynamic models, we found and confirmed that the neural system also follows the laws of thermodynamics: the activation of system always leads to increased internal energy, increased free energy, and decreased entropy as what is discovered in many other systems besides classic thermodynamic system. (3) The detection of neural disease was demonstrated to benefit from the thermodynamic model, which confirmed that the thermodynamic model proposed can indeed describe the evolution of the neural system diseases. And it further implied the immense potential of thermodynamics in auxiliary diagnosis.

Suggested Citation

  • Chenxi Zhou & Bin Yang & Wenliang Fan & Wei Li & Danilo Comminiello, 2021. "Brain Model Based on the Canonical Ensemble with Functional MRI: A Thermodynamic Exploration of the Neural System," Complexity, Hindawi, vol. 2021, pages 1-12, December.
  • Handle: RePEc:hin:complx:9961864
    DOI: 10.1155/2021/9961864
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9961864.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9961864.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9961864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9961864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.