IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9961428.html
   My bibliography  Save this article

Anomaly Detection of Highway Vehicle Trajectory under the Internet of Things Converged with 5G Technology

Author

Listed:
  • Ketao Deng
  • Zhihan Lv

Abstract

The gradual increase in the density of highway vehicles and traffic flow makes the abnormal driving state of vehicles an indispensable tool for assisting traffic dispatch. Intelligent transportation systems can detect and track vehicles in real time, acquire characteristics such as vehicle traffic, vehicle speed, vehicle flow density, and vehicle trajectory, and further perform advanced tasks such as vehicle trajectory. The detection of abnormal vehicle trajectory is an important content of vehicle trajectory understanding. And the development of the Internet of Things (IoT) and 5G technology has led to a continuous increase in the rate of data information circulation. The “Internet of Vehicles†generated based on the practice of 5G communication technology constitutes a vehicle abnormal trajectory detection system, which has very high feasibility and safety and stability. Therefore, this research is aimed at the needs of preventing major accidents and forensic analysis during highway vehicles. Based on the integration of the Internet of Things 5G communication technology, a trajectorial anomaly detection of highway vehicle trajectory based on the integration of the Internet of Things 5G is proposed. By accurately sensing unsafe events at the perception layer, network layer, and application layer, the vehicle driving trajectory state is divided into several simple semantic representations. The semantic representation is analyzed, and then the moving target detection and moving target tracking algorithms needed to extract the vehicle trajectory are introduced. Through video detection and tracking of moving vehicle targets, the driving trajectory of the vehicle is obtained, and the movement characteristics of the vehicle in each frame of image are extracted. According to the relationship between the trajectory of the vehicle and the lane line, the vehicle trajectory analysis is realized, and then it is judged whether the vehicle has abnormal trajectory. Compared with the traditional method of manually detecting the driving condition of the vehicle, the abnormal trajectory detection of the vehicle based on the integration of the Internet of Things and 5G can quickly detect the abnormal trajectory of the vehicle in the traffic monitoring video.

Suggested Citation

  • Ketao Deng & Zhihan Lv, 2021. "Anomaly Detection of Highway Vehicle Trajectory under the Internet of Things Converged with 5G Technology," Complexity, Hindawi, vol. 2021, pages 1-12, April.
  • Handle: RePEc:hin:complx:9961428
    DOI: 10.1155/2021/9961428
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9961428.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9961428.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9961428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9961428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.