Author
Listed:
- Wanqi Ma
- Chaoyu Yang
- Jie Yang
- Jian Wu
- Huihua Chen
Abstract
The label from industrial commodity packaging usually contains important data, such as production date, manufacturer, and other commodity-related information. As such, those labels are essential for consumers to purchase goods, help commodity supervision, and reveal potential product safety problems. Consequently, packaging label detection, as the prerequisite for product label identification, becomes a very useful application, which has achieved promising results in the past decades. Yet, in complex industrial scenarios, traditional detection methods are often unable to meet the requirements, which suffer from many problems of low accuracy and efficiency. In this paper, we propose a multifeature fast and attention-based algorithm using a combination of area suggestion and semantic segmentation. This algorithm is an attention-based efficient and multifeature fast text detector (termed AEMF). The proposed approach is formed by fusing segmentation branches and detection branches with each other. Based on the original algorithm that can only detect text in any direction, it is possible to detect different shapes with a better accuracy. Meanwhile, the algorithm also works better on long-text detection. The algorithm was evaluated using ICDAR2015, CTW1500, and MSRA-TD500 public datasets. The experimental results show that the proposed multifeature fusion with self-attention module makes the algorithm more accurate and efficient than existing algorithms. On the MSRA-TD500 dataset, the AEMF algorithm has an F-measure of 72.3% and a frame per second (FPS) of 8. On the CTW1500 dataset, the AEMF algorithm has an F-measure of 62.3% and an FPS of 23. In particular, the AEMF algorithm has achieved an F-measure of 79.3% and an FPS of 16 on the ICDAR2015 dataset, demonstrating the excellent performance in detecting label text on industrial packaging.
Suggested Citation
Wanqi Ma & Chaoyu Yang & Jie Yang & Jian Wu & Huihua Chen, 2021.
"AEMF: An Attention-Based Efficient and Multifeature Fast Text Detector,"
Complexity, Hindawi, vol. 2021, pages 1-8, July.
Handle:
RePEc:hin:complx:9958333
DOI: 10.1155/2021/9958333
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9958333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.