IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9958203.html
   My bibliography  Save this article

Performance Prediction for Higher Education Students Using Deep Learning

Author

Listed:
  • Shuping Li
  • Taotang Liu
  • M. Irfan Uddin

Abstract

Predicting students’ performance is very important in matters related to higher education as well as with regard to deep learning and its relationship to educational data. Prediction of students’ performance provides support in selecting courses and designing appropriate future study plans for students. In addition to predicting the performance of students, it helps teachers and managers to monitor students in order to provide support to them and to integrate the training programs to obtain the best results. One of the benefits of student’s prediction is that it reduces the official warning signs as well as expelling students because of their inefficiency. Prediction provides support to the students themselves through their choice of courses and study plans appropriate to their abilities. The proposed method used deep neural network in prediction by extracting informative data as a feature with corresponding weights. Multiple updated hidden layers are used to design neural network automatically; number of nodes and hidden layers controlled by feed forwarding and backpropagation data are produced by previous cases. The training mode is used to train the system with labeled data from dataset and the testing mode is used for evaluating the system. Mean absolute error (MAE) and root mean squared error (RMSE) with accuracy used for evolution of the proposed method. The proposed system has proven its worth in terms of efficiency through the achieved results in MAE (0.593) and RMSE (0.785) to get the best prediction.

Suggested Citation

  • Shuping Li & Taotang Liu & M. Irfan Uddin, 2021. "Performance Prediction for Higher Education Students Using Deep Learning," Complexity, Hindawi, vol. 2021, pages 1-10, July.
  • Handle: RePEc:hin:complx:9958203
    DOI: 10.1155/2021/9958203
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9958203.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9958203.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9958203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenguo Xu & Wanli Xie & Caixia Liu, 2023. "An Optimized Fractional Nonlinear Grey System Model and Its Application in the Prediction of the Development Scale of Junior Secondary Schools in China," Sustainability, MDPI, vol. 15(4), pages 1-12, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9958203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.