IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9951869.html
   My bibliography  Save this article

Prediction of Future State Based on Up-To-Date Information of Green Development Using Algorithm of Deep Neural Network

Author

Listed:
  • Liyan Sun
  • Li Yang
  • Junqi Zhu
  • M. Irfan Uddin

Abstract

In this study, the focus was on the development of green energy and future prediction for the consumption of current energy sources and green energy development using an improved deep learning (DL) algorithm. In addition to the analysis of the current energy consumption used for the natural gas and oil as fuel, deep neural network algorithm is used to train the system as well as to process the data obtained previously, ranging from literature from the year 2003 until the year 2019, for consumption of fuel. Also, using the proposed algorithm to predict the development of green energy consumption till 2030 is presented in terms of solar and wind generators. The resulting study also focuses on depletion of energy currently used or pollution caused because of it. The green energy controlling issue can take effect by using multiple layers of handling different features extracted from different sources and then learning the system to control it.This study aims to take advantage of carbon emissions to reduce their impact and dependence in the future on environmentally friendly renewable energies. Predicting the correct and precise amount of energy consumption and increasing the amount of environmentally friendly energy lead to a healthy ecosystem. The expected green energy consumption in the future is almost 78.25 EJ in 2030 and will be, in total energy average, 56% in 2045. The aim is to reduce dependency on costly and environmentally harmful fuels.

Suggested Citation

  • Liyan Sun & Li Yang & Junqi Zhu & M. Irfan Uddin, 2021. "Prediction of Future State Based on Up-To-Date Information of Green Development Using Algorithm of Deep Neural Network," Complexity, Hindawi, vol. 2021, pages 1-10, July.
  • Handle: RePEc:hin:complx:9951869
    DOI: 10.1155/2021/9951869
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9951869.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9951869.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9951869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jiaqing & Wang, Linlin & Siddik, Abu Bakkar & Abdul-Samad, Zulkiflee & Bhardwaj, Arpit & Singh, Bharat, 2023. "Forecasting GHG emissions for environmental protection with energy consumption reduction from renewable sources: A sustainable environmental system," Ecological Modelling, Elsevier, vol. 475(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9951869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.