IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9935900.html
   My bibliography  Save this article

Dance Movement Recognition Based on Feature Expression and Attribute Mining

Author

Listed:
  • Xianfeng Zhai
  • Zhihan Lv

Abstract

There are complex posture changes in dance movements, which lead to the low accuracy of dance movement recognition. And none of the current motion recognition uses the dancer’s attributes. The attribute feature of dancer is the important high-level semantic information in the action recognition. Therefore, a dance movement recognition algorithm based on feature expression and attribute mining is designed to learn the complicated and changeable dancer movements. Firstly, the original image information is compressed by the time-domain fusion module, and the information of action and attitude can be expressed completely. Then, a two-way feature extraction network is designed, which extracts the details of the actions along the way and takes the sequence image as the input of the network. Then, in order to enhance the expression ability of attribute features, a multibranch spatial channel attention integration module (MBSC) based on an attention mechanism is designed to extract the features of each attribute. Finally, using the semantic inference and information transfer function of the graph convolution network, the relationship between attribute features and dancer features can be mined and deduced, and more expressive action features can be obtained; thus, high-performance dance motion recognition is realized. The test and analysis results on the data set show that the algorithm can recognize the dance movement and improve the accuracy of the dance movement recognition effectively, thus realizing the movement correction function of the dancer.

Suggested Citation

  • Xianfeng Zhai & Zhihan Lv, 2021. "Dance Movement Recognition Based on Feature Expression and Attribute Mining," Complexity, Hindawi, vol. 2021, pages 1-12, May.
  • Handle: RePEc:hin:complx:9935900
    DOI: 10.1155/2021/9935900
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9935900.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9935900.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9935900?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9935900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.