IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9933720.html
   My bibliography  Save this article

Modeling and Simulating Online Panic in an Epidemic Complexity System: An Agent-Based Approach

Author

Listed:
  • Linjiang Guo
  • Yang Li
  • Dongfang Sheng
  • Baogui Xin

Abstract

Following the outbreak of a disease, panic often spreads on online forums, which seriously affects normal economic operations as well as epidemic prevention procedures. Online panic is often manifested earlier than in the real world, leading to an aggravated social response from citizens. This paper conducts sentiment analysis on more than 80,000 comments about COVID-19 obtained from the Chinese Internet and identifies patterns within them. Based on this analysis, we propose an agent-based model consisting of two parts—a revised SEIR model to simulate an offline epidemic and a scale-free network to simulate the Internet community. This model is then used to analyze the effects of the social distancing policy. Assuming the existence of such a policy, online panic is simulated corresponding to different informatization levels. The results indicate that increased social informatization levels lead to substantial online panic during disease outbreaks. To reduce the economic impact of epidemics, we discuss different strategies for releasing information on the epidemic. Our conclusions indicate that announcing the number of daily new cases or the number of asymptomatic people following the peak of symptomatic infections could help to reduce the intensity of online panic and delay the peak of panic. In turn, this can be expected to keep social production more orderly and reduce the impact of social responses on the economy.

Suggested Citation

  • Linjiang Guo & Yang Li & Dongfang Sheng & Baogui Xin, 2021. "Modeling and Simulating Online Panic in an Epidemic Complexity System: An Agent-Based Approach," Complexity, Hindawi, vol. 2021, pages 1-10, July.
  • Handle: RePEc:hin:complx:9933720
    DOI: 10.1155/2021/9933720
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9933720.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/9933720.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/9933720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Zhang & Shiyong Liu & Nathaniel Osgood & Hongli Zhu & Ying Qian & Peng Jia, 2023. "Using simulation modelling and systems science to help contain COVID‐19: A systematic review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 207-234, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9933720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.