IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9840860.html
   My bibliography  Save this article

Nonlinear Resonant Responses, Mode Interactions, and Multitime Periodic and Chaotic Oscillations of a Cantilevered Pipe Conveying Pulsating Fluid under External Harmonic Force

Author

Listed:
  • Y. F. Zhang
  • T. Liu
  • W. Zhang

Abstract

The nonlinear resonant responses, mode interactions, and multitime periodic and chaotic oscillations of the cantilevered pipe conveying pulsating fluid are studied under the harmonic external force in this research. According to the nonlinear dynamic model of the cantilevered beam derived using Hamilton’s principle under the uniformly distributed external harmonic excitation, we combine Galerkin technique and the method of multiple scales together to obtain the average equation of the cantilevered pipe conveying pulsating fluid under 1 : 3 internal resonance and principal parametric resonance. Based on the average equation in the polar form, several amplitude-frequency response curves are obtained corresponding to the certain parameters. It is found that there exist the hardening-spring type behaviors and jumping phenomena in the cantilevered pipe conveying pulsating fluid. The nonlinear oscillations of the cantilevered pipe conveying pulsating fluid can be excited more easily with the increase of the flow velocity, external excitation, and coupling degree of two order modes. Numerical simulations are performed to study the chaos of the cantilevered pipe conveying pulsating fluid with the external harmonic excitation. The simulation results exhibit the existence of the period, multiperiod, and chaotic responses with the variations of the fluid velocity or excitation. It is found that, in the cantilevered pipe conveying pulsating fluid, there are the multitime nonlinear vibrations around the left-mode and the right-mode positions, respectively. We also observe that there exist alternately the periodic and chaotic vibrations of the cantilevered pipe conveying pulsating fluid in the certain range.

Suggested Citation

  • Y. F. Zhang & T. Liu & W. Zhang, 2020. "Nonlinear Resonant Responses, Mode Interactions, and Multitime Periodic and Chaotic Oscillations of a Cantilevered Pipe Conveying Pulsating Fluid under External Harmonic Force," Complexity, Hindawi, vol. 2020, pages 1-26, August.
  • Handle: RePEc:hin:complx:9840860
    DOI: 10.1155/2020/9840860
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9840860.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9840860.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9840860?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9840860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.