Author
Listed:
- Pan Su
- JieChang Wu
- Guanghui Chang
- Shuyong Liu
- Xuejiao Feng
- Sheng Du
Abstract
The leakage of the ship’s pipeline system will bring great risks to the engine equipment and seriously threaten the vitality of the ship. In this paper, the pipeline leakage detection and localization research are carried out based on the vibration signal generated by pipeline leakage. First, the finite element model of the pipeline is constructed to obtain the variation law of the vibration signal when the pipeline leaks are carried out. Second, the vibration signal is processed based on the variational mode decomposition (VMD) and radial basis function (RBF) neural networks. The wavelet packet threshold noise reduction is conducted before signal decomposition to improve the signal-to-noise ratio. Then, the denoised signal is decomposed by VMD. The effective component is identified by analyzing the correlation coefficient between the component and the denoised signal. The center frequency and energy of the effective component are used as feature vector to train the RBF neural network to identify and locate leakage. Finally, a pipeline leakage test platform is built under laboratory conditions. After processing the data samples collected from the test, the RBF neural network is trained to identify and locate leaks. The test sample identification results show that the leak identification and localization method based on VMD-RBF has a high accuracy.
Suggested Citation
Pan Su & JieChang Wu & Guanghui Chang & Shuyong Liu & Xuejiao Feng & Sheng Du, 2023.
"The Leakage Identification and Location of Ship Pipeline System Based on Vibration Signal Processing,"
Complexity, Hindawi, vol. 2023, pages 1-16, June.
Handle:
RePEc:hin:complx:9646710
DOI: 10.1155/2023/9646710
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9646710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.