IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9601763.html
   My bibliography  Save this article

Research on Hybrid Wind Speed Prediction System Based on Artificial Intelligence and Double Prediction Scheme

Author

Listed:
  • Ying Nie
  • He Bo
  • Weiqun Zhang
  • Haipeng Zhang

Abstract

Wind energy analysis and wind speed modeling have a significant impact on wind power generation systems and have attracted significant attention from many researchers in recent decades. Based on the inherent characteristics of wind speed, such as nonlinearity and randomness, the prediction of wind speed is considered to be a challenging task. Previous studies have only considered point prediction or interval measurement of wind speed separately and have not combined these two methods for prediction and analysis. In this study, we developed a novel hybrid wind speed double prediction system comprising a point prediction module and interval prediction module to compensate for the shortcomings of existing research. Regarding point prediction in the developed double prediction system, a novel nonlinear integration method based on a backpropagation network optimized using the multiobjective evolutionary algorithm based on decomposition was successfully implemented to derive the final prediction results, which enable further improvement of the accuracy of point prediction. Based on point prediction results, we propose an interval prediction method that constructs different intervals according to the classification of different data features via fuzzy clustering, which provides reliable interval prediction results. The experimental results demonstrate that the proposed system outperforms existing methods in engineering applications and can be used as an effective technology for power system planning.

Suggested Citation

  • Ying Nie & He Bo & Weiqun Zhang & Haipeng Zhang, 2020. "Research on Hybrid Wind Speed Prediction System Based on Artificial Intelligence and Double Prediction Scheme," Complexity, Hindawi, vol. 2020, pages 1-22, March.
  • Handle: RePEc:hin:complx:9601763
    DOI: 10.1155/2020/9601763
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9601763.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9601763.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9601763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    2. Zhang, Wenyu & Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong, 2020. "Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting," Applied Energy, Elsevier, vol. 277(C).
    3. Nie, Ying & Liang, Ni & Wang, Jianzhou, 2021. "Ultra-short-term wind-speed bi-forecasting system via artificial intelligence and a double-forecasting scheme," Applied Energy, Elsevier, vol. 301(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9601763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.