IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9496599.html
   My bibliography  Save this article

The Study of a Predator-Prey Model with Fear Effect Based on State-Dependent Harvesting Strategy

Author

Listed:
  • Y. Tian
  • H. M. Li
  • Toshikazu Kuniya

Abstract

In presence of predator population, the prey population may significantly change their behavior. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study, we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order-q (q≥1) periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given, which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the order-q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation using MATLAB.

Suggested Citation

  • Y. Tian & H. M. Li & Toshikazu Kuniya, 2022. "The Study of a Predator-Prey Model with Fear Effect Based on State-Dependent Harvesting Strategy," Complexity, Hindawi, vol. 2022, pages 1-19, January.
  • Handle: RePEc:hin:complx:9496599
    DOI: 10.1155/2022/9496599
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/9496599.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/9496599.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/9496599?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yangyang Su & Tongqian Zhang, 2022. "Global Dynamics of a Predator–Prey Model with Fear Effect and Impulsive State Feedback Control," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    2. Tian, Yuan & Gao, Yan & Sun, Kaibiao, 2022. "Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9496599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.