IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9476981.html
   My bibliography  Save this article

A Time-Aware CNN-Based Personalized Recommender System

Author

Listed:
  • Dan Yang
  • Jing Zhang
  • Sifeng Wang
  • XueDong Zhang

Abstract

Recommender system has received tremendous attention and has been studied by scholars in recent years due to its wide applications in different domains. With the in-depth study and application of deep learning algorithms, deep neural network is gradually used in recommender systems. The success of modern recommender system mainly depends on the understanding and application of the context of recommendation requests. However, when leveraging deep learning algorithms for recommendation, the impact of context information such as recommendation time and location is often neglected. In this paper, a time-aware convolutional neural network- (CNN-) based personalized recommender system TC-PR is proposed. TC-PR actively recommends items that meet users’ interests by analyzing users’ features, items’ features, and users’ ratings, as well as users’ time context. Moreover, we use Tensorflow distributed open source framework to implement the proposed time-aware CNN-based recommendation algorithm which can effectively solve the problems of large data volume, large model, and slow speed of recommender system. The experimental results on the MovieLens-1m real dataset show that the proposed TC-PR can effectively solve the cold-start problem and greatly improve the speed of data processing and the accuracy of recommendation.

Suggested Citation

  • Dan Yang & Jing Zhang & Sifeng Wang & XueDong Zhang, 2019. "A Time-Aware CNN-Based Personalized Recommender System," Complexity, Hindawi, vol. 2019, pages 1-11, December.
  • Handle: RePEc:hin:complx:9476981
    DOI: 10.1155/2019/9476981
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9476981.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9476981.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9476981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Wang & Enhui Wang & Zikun Zhu & Yangyang Sun & Yaodong Tao & Wei Wang, 2021. "An explainable sentiment prediction model based on the portraits of users sharing representative opinions in social sensors," International Journal of Distributed Sensor Networks, , vol. 17(10), pages 15501477211, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9476981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.