IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9345609.html
   My bibliography  Save this article

A Method Adjusting Consistency and Consensus for Group Decision-Making Problems with Hesitant Fuzzy Linguistic Preference Relations Based on Discrete Fuzzy Numbers

Author

Listed:
  • Meng Zhao
  • Ting Liu
  • Jia Su
  • Meng-Ying Liu

Abstract

In each hesitant fuzzy linguistic preference relation, experts may express their opinions through comparison linguistic information combined with a discrete fuzzy number. In this paper, a hesitant fuzzy linguistic computational model based on discrete fuzzy numbers whose support is a subset of consecutive natural numbers is proposed, which enriches the flexibility of group decision-making. First, some main concepts related to discrete fuzzy numbers and an aggregation function of individual subjective linguistic preference relations are introduced. Then, a consistency measure is presented to check and improve the consistency in a given matrix. Further, in order to achieve the predefined degree of consensus and to arrive at the final result, a consensus-reaching process based on the interactive feedback mechanism is defined. Meanwhile, a revised formula is introduced to calculate the consistency and the degree of consensus in a preference relation matrix. Besides, an illustrative example and comparative analysis are conducted through the proposed calculation process and the optimization algorithm. Finally, the analysis on the threshold values is made to help the decision-maker determine critical consensus level. The proposed method can address both consistency and consensus, and the results confirmed the effectiveness of the proposed method and its potential use in the qualitative decision-making problems.

Suggested Citation

  • Meng Zhao & Ting Liu & Jia Su & Meng-Ying Liu, 2018. "A Method Adjusting Consistency and Consensus for Group Decision-Making Problems with Hesitant Fuzzy Linguistic Preference Relations Based on Discrete Fuzzy Numbers," Complexity, Hindawi, vol. 2018, pages 1-17, July.
  • Handle: RePEc:hin:complx:9345609
    DOI: 10.1155/2018/9345609
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/9345609.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/9345609.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9345609?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Brunelli, Matteo & Fedrizzi, Michele, 2015. "Boundary properties of the inconsistency of pairwise comparisons in group decisions," European Journal of Operational Research, Elsevier, vol. 240(3), pages 765-773.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huimin Zhang & Meng Li & Wen Chen, 2023. "Assessing Competitiveness in New Energy Vehicle Enterprises: A Group Decision Model with Interval Multiplicative Preference Relations," Mathematics, MDPI, vol. 12(1), pages 1-21, December.
    2. Liu, Bingsheng & Shen, Yinghua & Zhang, Wei & Chen, Xiaohong & Wang, Xueqing, 2015. "An interval-valued intuitionistic fuzzy principal component analysis model-based method for complex multi-attribute large-group decision-making," European Journal of Operational Research, Elsevier, vol. 245(1), pages 209-225.
    3. Wang, Zhou-Jing, 2015. "A note on “A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making”," European Journal of Operational Research, Elsevier, vol. 247(3), pages 867-871.
    4. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    5. Ivlev, Ilya & Vacek, Jakub & Kneppo, Peter, 2015. "Multi-criteria decision analysis for supporting the selection of medical devices under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(1), pages 216-228.
    6. Xinyi Zhou & Yong Hu & Yong Deng & Felix T. S. Chan & Alessio Ishizaka, 2018. "A DEMATEL-based completion method for incomplete pairwise comparison matrix in AHP," Annals of Operations Research, Springer, vol. 271(2), pages 1045-1066, December.
    7. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    8. Michele Fedrizzi & Nino Civolani & Andrew Critch, 2020. "Inconsistency evaluation in pairwise comparison using norm-based distances," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 657-672, December.
    9. Marcin Anholcer & János Fülöp, 2019. "Deriving priorities from inconsistent PCM using network algorithms," Annals of Operations Research, Springer, vol. 274(1), pages 57-74, March.
    10. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    11. Wu, Zhibin & Xu, Jiuping, 2016. "Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations," Omega, Elsevier, vol. 65(C), pages 28-40.
    12. Przybyła-Kasperek, Małgorzata & Wakulicz-Deja, Alicja, 2016. "The strength of coalition in a dispersed decision support system with negotiations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 947-968.
    13. Wuyong Qian & Zhou-Jing Wang & Kevin W. Li, 2016. "Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations," IJERPH, MDPI, vol. 13(9), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9345609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.