IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9318308.html
   My bibliography  Save this article

A Hybrid Approach Integrating Multiple ICEEMDANs, WOA, and RVFL Networks for Economic and Financial Time Series Forecasting

Author

Listed:
  • Jiang Wu
  • Tengfei Zhou
  • Taiyong Li

Abstract

The fluctuations of economic and financial time series are influenced by various kinds of factors and usually demonstrate strong nonstationary and high complexity. Therefore, accurately forecasting economic and financial time series is always a challenging research topic. In this study, a novel multidecomposition and self-optimizing hybrid approach integrating multiple improved complete ensemble empirical mode decompositions with adaptive noise (ICEEMDANs), whale optimization algorithm (WOA), and random vector functional link (RVFL) neural networks, namely, MICEEMDAN-WOA-RVFL, is developed to predict economic and financial time series. First, we employ ICEEMDAN with random parameters to separate the original time series into a group of comparatively simple subseries multiple times. Second, we construct RVFL networks to individually forecast each subseries. Considering the complex parameter settings of RVFL networks, we utilize WOA to search the optimal parameters for RVFL networks simultaneously. Then, we aggregate the prediction results of individual decomposed subseries as the prediction results of each decomposition, respectively, and finally integrate these prediction results of all the decompositions as the final ensemble prediction results. The proposed MICEEMDAN-WOA-RVFL remarkably outperforms the compared single and ensemble benchmark models in terms of forecasting accuracy and stability, as demonstrated by the experiments conducted using various economic and financial time series, including West Texas Intermediate (WTI) crude oil prices, US dollar/Euro foreign exchange rate (USD/EUR), US industrial production (IP), and Shanghai stock exchange composite index (SSEC).

Suggested Citation

  • Jiang Wu & Tengfei Zhou & Taiyong Li, 2020. "A Hybrid Approach Integrating Multiple ICEEMDANs, WOA, and RVFL Networks for Economic and Financial Time Series Forecasting," Complexity, Hindawi, vol. 2020, pages 1-17, October.
  • Handle: RePEc:hin:complx:9318308
    DOI: 10.1155/2020/9318308
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9318308.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9318308.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9318308?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Bossman, Ahmed & Umar, Zaghum & Agyei, Samuel Kwaku & Junior, Peterson Owusu, 2022. "A new ICEEMDAN-based transfer entropy quantifying information flow between real estate and policy uncertainty," Research in Economics, Elsevier, vol. 76(3), pages 189-205.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9318308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.