IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9267054.html
   My bibliography  Save this article

Enhancing Cooperative Coevolution with Selective Multiple Populations for Large-Scale Global Optimization

Author

Listed:
  • Xingguang Peng
  • Yapei Wu

Abstract

The cooperative coevolution (CC) algorithm features a “divide-and-conquer” problem-solving process. This feature has great potential for large-scale global optimization (LSGO) while inducing some inherent problems of CC if a problem is improperly decomposed. In this work, a novel CC named selective multiple population- (SMP-) based CC (CC-SMP) is proposed to enhance the cooperation of subproblems by addressing two challenges: finding informative collaborators whose fitness and diversity are qualified and adapting to the dynamic landscape. In particular, a CMA-ES-based multipopulation procedure is employed to identify local optima which are then shared as potential informative collaborators. A restart-after-stagnation procedure is incorporated to help the child populations adapt to the dynamic landscape. A biobjective selection is also incorporated to select qualified child populations according to the criteria of informative individuals (fitness and diversity). Only selected child populations are active in the next evolutionary cycle while the others are frozen to save computing resource. In the experimental study, the proposed CC-SMP is compared to 7 state-of-the-art CC algorithms on 20 benchmark functions with 1000 dimensionality. Statistical comparison results figure out significant superiority of the CC-SMP. In addition, behavior of the SMP scheme and sensitivity to the cooperation frequency are also analyzed.

Suggested Citation

  • Xingguang Peng & Yapei Wu, 2018. "Enhancing Cooperative Coevolution with Selective Multiple Populations for Large-Scale Global Optimization," Complexity, Hindawi, vol. 2018, pages 1-15, July.
  • Handle: RePEc:hin:complx:9267054
    DOI: 10.1155/2018/9267054
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/9267054.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/9267054.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/9267054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinghua Gu & Xuexian Li & Song Jiang, 2019. "Hybrid Genetic Grey Wolf Algorithm for Large-Scale Global Optimization," Complexity, Hindawi, vol. 2019, pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9267054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.