IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9174284.html
   My bibliography  Save this article

Robust Position Control of a Two-Sided 1-DoF Impacting Mechanical Oscillator Subject to an External Persistent Disturbance by Means of a State-Feedback Controller

Author

Listed:
  • Firas Turki
  • Hassène Gritli
  • Safya Belghith

Abstract

This paper proposes a state-feedback controller using the linear matrix inequality (LMI) approach for the robust position control of a 1-DoF, periodically forced, impact mechanical oscillator subject to asymmetric two-sided rigid end-stops. The periodic forcing input is considered as a persistent external disturbance. The motion of the impacting oscillator is modeled by an impulsive hybrid dynamics. Thus, the control problem of the impact oscillator is recast as a problem of the robust control of such disturbed impulsive hybrid system. To synthesize stability conditions, we introduce the S-procedure and the Finsler lemmas by only considering the region within which the state evolves. We show that the stability conditions are first expressed in terms of bilinear matrix inequalities (BMIs). Using some technical lemmas, we convert these BMIs into LMIs. Finally, some numerical results and simulations are given. We show the effectiveness of the designed state-feedback controller in the robust stabilization of the position of the impact mechanical oscillator under the disturbance.

Suggested Citation

  • Firas Turki & Hassène Gritli & Safya Belghith, 2019. "Robust Position Control of a Two-Sided 1-DoF Impacting Mechanical Oscillator Subject to an External Persistent Disturbance by Means of a State-Feedback Controller," Complexity, Hindawi, vol. 2019, pages 1-14, December.
  • Handle: RePEc:hin:complx:9174284
    DOI: 10.1155/2019/9174284
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/9174284.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/9174284.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/9174284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. de Souza, Silvio L.T. & Caldas, Iberê L. & Viana, Ricardo L., 2007. "Damping control law for a chaotic impact oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 745-750.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Liang & Xu, Wei & Li, Gaojie & Li, Dongxi, 2009. "Response of a stochastic Duffing–Van der Pol elastic impact oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2075-2080.
    2. Li, Chao, 2019. "Stochastic response of a vibro-impact system with variable mass," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 151-160.
    3. Guasch, Oriol & Van Hirtum, Annemie & Fernández, A. Inés & Arnela, Marc, 2022. "Controlling chaotic oscillations in a symmetric two-mass model of the vocal folds," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Guasch, Oriol & Freixes, Marc & Arnela, Marc & Van Hirtum, Annemie, 2024. "Controlling chaotic vocal fold oscillations in the numerical production of vowel sounds," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9174284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.