Author
Listed:
- Lun Li
- Fan Bai
- Wencheng Wang
- Xiaojin Wu
- Yihua Dong
- Dan SeliÅŸteanu
Abstract
Flapping-wing flight control is a multi-input and multi-output nonlinear system with uncertainties, which is affected by modeling errors, parameter variations, external disturbances, and unmodeled dynamics. Parameter uncertainty has a great impact on the stability control of flapping-wing flight, and gain adjustment is a common means to deal with parameter uncertainty, but it is complex and time-consuming. Based on the mechanism of flapping-wing flight, a nonlinear dynamic model for flapping-wing dynamic flight is established by analyzing the forces, moments, and attitude changes of the fuselage and wing in detail. Based on the constructed dynamic model, a fast robust adaptive flapping-wing flight control method is proposed. The state predictor is designed to estimate and monitor the uncertain parameters in the flapping-wing attitude control model, and the adaptive law adjusts the parameter estimation to ensure that the output error between the state predictor and the controlled object is stable in the Lyapunov sense, and finally the adaptive control law is obtained. At the same time, the Monte Carlo-support vector machine method is used to optimize the boundary of the control parameters in the flight control to obtain the control parameters that can meet the control expectations, and the obtained parameters are classified and judged according to the stable level flight conditions. Based on the adjusted parameters and the predetermined control signal, the control amount is adjusted according to the control law. When the adaptive gain is large enough, the simulation results show that the system has good transient response characteristics.
Suggested Citation
Lun Li & Fan Bai & Wencheng Wang & Xiaojin Wu & Yihua Dong & Dan SeliÅŸteanu, 2023.
"Modeling and Simulation Analysis of Bionic Flapping-Wing Flight Attitude Control Based on L1 Adaptive,"
Complexity, Hindawi, vol. 2023, pages 1-24, October.
Handle:
RePEc:hin:complx:9066127
DOI: 10.1155/2023/9066127
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9066127. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.