IDEAS home Printed from https://ideas.repec.org/a/hin/complx/9052457.html
   My bibliography  Save this article

High-Order Breather Solutions, Lump Solutions, and Hybrid Solutions of a Reduced Generalized (3 + 1)-Dimensional Shallow Water Wave Equation

Author

Listed:
  • Jing Wang
  • Biao Li

Abstract

We investigate a reduced generalized (3 + 1)-dimensional shallow water wave equation, which can be used to describe the nonlinear dynamic behavior in physics. By employing Bell’s polynomials, the bilinear form of the equation is derived in a very natural way. Based on Hirota’s bilinear method, the expression of - soliton wave solutions is derived. By using the resulting - soliton expression and reasonable constraining parameters, we concisely construct the high-order breather solutions, which have periodicity in - plane. By taking a long-wave limit of the breather solutions, we have obtained the high-order lump solutions and derived the moving path of lumps. Moreover, we provide the hybrid solutions which mean different types of combinations in lump(s) and line wave. In order to better understand these solutions, the dynamic phenomena of the above breather solutions, lump solutions, and hybrid solutions are demonstrated by some figures.

Suggested Citation

  • Jing Wang & Biao Li, 2020. "High-Order Breather Solutions, Lump Solutions, and Hybrid Solutions of a Reduced Generalized (3 + 1)-Dimensional Shallow Water Wave Equation," Complexity, Hindawi, vol. 2020, pages 1-13, April.
  • Handle: RePEc:hin:complx:9052457
    DOI: 10.1155/2020/9052457
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/9052457.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/9052457.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/9052457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:9052457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.