IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8932526.html
   My bibliography  Save this article

The Emergence of Informative Higher Scales in Complex Networks

Author

Listed:
  • Brennan Klein
  • Erik Hoel

Abstract

The connectivity of a network contains information about the relationships between nodes, which can denote interactions, associations, or dependencies. We show that this information can be analyzed by measuring the uncertainty (and certainty) contained in paths along nodes and links in a network. Specifically, we derive from first principles a measure known as effective information and describe its behavior in common network models. Networks with higher effective information contain more information in the relationships between nodes. We show how subgraphs of nodes can be grouped into macronodes, reducing the size of a network while increasing its effective information (a phenomenon known as causal emergence ). We find that informative higher scales are common in simulated and real networks across biological, social, informational, and technological domains. These results show that the emergence of higher scales in networks can be directly assessed and that these higher scales offer a way to create certainty out of uncertainty.

Suggested Citation

  • Brennan Klein & Erik Hoel, 2020. "The Emergence of Informative Higher Scales in Complex Networks," Complexity, Hindawi, vol. 2020, pages 1-12, April.
  • Handle: RePEc:hin:complx:8932526
    DOI: 10.1155/2020/8932526
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8932526.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8932526.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8932526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernando E Rosas & Pedro A M Mediano & Henrik J Jensen & Anil K Seth & Adam B Barrett & Robin L Carhart-Harris & Daniel Bor, 2020. "Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8932526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.