Author
Listed:
- Yirui Wu
- Xiao Tan
- Tong Lu
Abstract
With significant development of Internet of medical things (IoMT) and cloud-fog-edge computing, medical industry is now involving medical big data to improve quality of service in patient care. Karyotyping refers classifying human chromosomes. However, performing karyotyping task generally requires domain expertise in cytogenetics, long-period experience for high accuracy, and considerable manual efforts. An end-to-end chromosome karyotype analysis system is proposed over medical big data to automatically and accurately perform chromosome related tasks of detection, segmentation, and classification. Facing image data generated and collected by means of edge computing, we firstly utilize visual feature to generate chromosome candidates with Extremal Regions (ER) technology. Due to severe occlusion and cross overlapping, we utilize ring radius transform to cluster pixels with same property to approximate chromosome shapes. To solve the problem of unbalanced and small dataset by covering diverse data patterns, we proposed multidistributed generated advertising network (MD-GAN) to perform data enhancement by generating additional training samples. Afterwards, we fine-tune CNN for chromosome classification task by involving generated and sufficient training images. Through experiments in self-collected datasets, the proposed method achieves high accuracy in tasks of chromosome detection, segmentation, and classification. Moreover, experimental results prove that MD-GAN-based data enhancement contributes to classification results of CNN to a certain extent.
Suggested Citation
Yirui Wu & Xiao Tan & Tong Lu, 2020.
"A New Multiple-Distribution GAN Model to Solve Complexity in End-to-End Chromosome Karyotyping,"
Complexity, Hindawi, vol. 2020, pages 1-15, May.
Handle:
RePEc:hin:complx:8923838
DOI: 10.1155/2020/8923838
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8923838. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.