IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8917393.html
   My bibliography  Save this article

An Improved EMD-Based Dissimilarity Metric for Unsupervised Linear Subspace Learning

Author

Listed:
  • Xiangchun Yu
  • Zhezhou Yu
  • Wei Pang
  • Minghao Li
  • Lei Wu

Abstract

We investigate a novel way of robust face image feature extraction by adopting the methods based on Unsupervised Linear Subspace Learning to extract a small number of good features. Firstly, the face image is divided into blocks with the specified size, and then we propose and extract pooled Histogram of Oriented Gradient (pHOG) over each block. Secondly, an improved Earth Mover’s Distance (EMD) metric is adopted to measure the dissimilarity between blocks of one face image and the corresponding blocks from the rest of face images. Thirdly, considering the limitations of the original Locality Preserving Projections (LPP), we proposed the Block Structure LPP (BSLPP), which effectively preserves the structural information of face images. Finally, an adjacency graph is constructed and a small number of good features of a face image are obtained by methods based on Unsupervised Linear Subspace Learning. A series of experiments have been conducted on several well-known face databases to evaluate the effectiveness of the proposed algorithm. In addition, we construct the noise, geometric distortion, slight translation, slight rotation AR, and Extended Yale B face databases, and we verify the robustness of the proposed algorithm when faced with a certain degree of these disturbances.

Suggested Citation

  • Xiangchun Yu & Zhezhou Yu & Wei Pang & Minghao Li & Lei Wu, 2018. "An Improved EMD-Based Dissimilarity Metric for Unsupervised Linear Subspace Learning," Complexity, Hindawi, vol. 2018, pages 1-24, February.
  • Handle: RePEc:hin:complx:8917393
    DOI: 10.1155/2018/8917393
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/8917393.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/8917393.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/8917393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengxin Liu & Wenyuan Tao & Xiao Zhang & Yi Chen & Jie Li & Chung-Ming Own, 2019. "GO Loss: A Gaussian Distribution-Based Orthogonal Decomposition Loss for Classification," Complexity, Hindawi, vol. 2019, pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8917393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.