Author
Listed:
- Hui Liu
- Jingqing Jiang
- Yaowei Hou
- Jie Song
Abstract
Cities in the big data era hold the massive urban data to create valuable information and digitally enhanced services. Sources of urban data are generally categorized as one of the three types: official, social, and sensorial, which are from the government and enterprises, social networks of citizens, and the sensor network. These types typically differ significantly from each other but are consolidated together for the smart urban services. Based on the sophisticated consolidation approaches, we argue that a new challenge, fragment complexity that represents a well-integrated data has appropriate but fragmentary schema and difficult to be queried, is ignored in the state-of-art urban data management. Comparing with predefined and rigid schema, fragmentary schema means a dataset contains millions of attributes but nonorthogonally distributed among tables, and of course, values of these attributes are even massive. As far as a query is concerned, locating where these attributes are being stored is the first encountered problem, while traditional value-based query optimization has no contributions. To address this problem, we propose an index on massive attributes as an attributes-oriented optimization, namely, attribute index. Attribute index is a secondary index for locating files in which the target attributes are stored. It contains three parts: ATree for searching keys, DTree for locating keys among files, and ADLinks as a mapping table between ATree and DTree. In this paper, the index architecture, logical structure and algorithms, the implementation details, the creation process, the integration to the existing key-value store, and the urban application scenario are described. Experiments show that, in comparison with B + -Tree, LSM-Tree, and AVL-Tree, the query time of ATree is 1.1x, 1.5x, and 1.2x faster, respectively. Finally, we integrate our proposition with HBase, namely, UrbanBase, whose query performance is 1.3x faster than the original HBase.
Suggested Citation
Hui Liu & Jingqing Jiang & Yaowei Hou & Jie Song, 2020.
"Solving the Fragment Complexity of Official, Social, and Sensorial Urban Data,"
Complexity, Hindawi, vol. 2020, pages 1-14, October.
Handle:
RePEc:hin:complx:8914757
DOI: 10.1155/2020/8914757
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8914757. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.