IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8897105.html
   My bibliography  Save this article

Construction and Analysis of Emotion Computing Model Based on LSTM

Author

Listed:
  • Huiping Jiang
  • Rui Jiao
  • Zequn Wang
  • Ting Zhang
  • Licheng Wu
  • Ning Cai

Abstract

The electroencephalogram (EEG) is the most common method used to study emotions and capture electrical brain activity changes. Long short-term memory (LSTM) processes the temporal characteristics of data and is mostly used for emotional text and speech recognition. Since an EEG involves a time series signal, this article mainly studied the introduction of LSTM for emotional EEG recognition. First, an ALL-LSTM model with a four-layered LSTM network was established in which the average accuracy rate for emotional classification reached 86.48%. Second, four EEG characteristics were extracted via the wavelet transform (WT) using the LSTM-based sentiment classification network. The experimental results showed that the best average classification accuracy of these four features was 73.48%. This was 13% lower than in the ALL-LSTM model, indicating that inappropriate feature extraction methods could destroy the timing of EEG signals. LSTM can be used to thoroughly examine EEG signal timing and preprocessed EEG data. The accuracy and stability of the ALL-LSTM model are significantly superior to those of the WT-LSTM model. The result showed that the process of emotion generation based on EEG is sequential. Compared with EEG emotion extraction using WT, the raw EEG signal’s timing is more suitable for the LSTM network.

Suggested Citation

  • Huiping Jiang & Rui Jiao & Zequn Wang & Ting Zhang & Licheng Wu & Ning Cai, 2021. "Construction and Analysis of Emotion Computing Model Based on LSTM," Complexity, Hindawi, vol. 2021, pages 1-12, February.
  • Handle: RePEc:hin:complx:8897105
    DOI: 10.1155/2021/8897105
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8897105.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8897105.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8897105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuemei Li & Hao Chang & Ruichao Wei & Shenshi Huang & Shaozhang Chen & Zhiwei He & Dongxu Ouyang, 2023. "Online Prediction of Electric Vehicle Battery Failure Using LSTM Network," Energies, MDPI, vol. 16(12), pages 1-14, June.
    2. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8897105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.