IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8870783.html
   My bibliography  Save this article

A Dynamic Opposite Learning Assisted Grasshopper Optimization Algorithm for the Flexible JobScheduling Problem

Author

Listed:
  • Yi Feng
  • Mengru Liu
  • Yuqian Zhang
  • Jinglin Wang

Abstract

Job shop scheduling problem (JSP) is one of the most difficult optimization problems in manufacturing industry, and flexible job shop scheduling problem (FJSP) is an extension of the classical JSP, which further challenges the algorithm performance. In FJSP, a machine should be selected for each process from a given set, which introduces another decision element within the job path, making FJSP be more difficult than traditional JSP. In this paper, a variant of grasshopper optimization algorithm (GOA) named dynamic opposite learning assisted GOA (DOLGOA) is proposed to solve FJSP. The recently proposed dynamic opposite learning (DOL) strategy adopts the asymmetric search space to improve the exploitation ability of the algorithm and increase the possibility of finding the global optimum. Various popular benchmarks from CEC 2014 and FJSP are used to evaluate the performance of DOLGOA. Numerical results with comparisons of other classic algorithms show that DOLGOA gets obvious improvement for solving global optimization problems and is well-performed when solving FJSP.

Suggested Citation

  • Yi Feng & Mengru Liu & Yuqian Zhang & Jinglin Wang, 2020. "A Dynamic Opposite Learning Assisted Grasshopper Optimization Algorithm for the Flexible JobScheduling Problem," Complexity, Hindawi, vol. 2020, pages 1-19, December.
  • Handle: RePEc:hin:complx:8870783
    DOI: 10.1155/2020/8870783
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8870783.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8870783.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8870783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Abd Elaziz & Laith Abualigah & Dalia Yousri & Diego Oliva & Mohammed A. A. Al-Qaness & Mohammad H. Nadimi-Shahraki & Ahmed A. Ewees & Songfeng Lu & Rehab Ali Ibrahim, 2021. "Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection," Mathematics, MDPI, vol. 9(21), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8870783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.