IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8861896.html
   My bibliography  Save this article

Deep Belief Network-Based Multifeature Fusion Music Classification Algorithm and Simulation

Author

Listed:
  • Tianzhuo Gong
  • Wei Wang

Abstract

In this paper, the multifeature fusion music classification algorithm and its simulation results are studied by deep confidence networks, the multifeature fusion music database is established and preprocessed, and then features are extracted. The simulation is carried out using multifeature fusion music data. The multifeature fusion music preprocessing includes endpoint detection, framing, windowing, and pre-emphasis. In this paper, we extracted the rhythm features, sound quality features, and spectral features, including energy, cross-zero rate, fundamental frequency, harmonic noise ratio, and 12 statistical features, including maximum value, mean value, and linear slope. A total of 384-dimensional statistical features was extracted and compared with the classification ability of different emotional features. The deficiencies of the traditional classification algorithm are first studied, and then by introducing confusion, constructing multilevel classifiers, and tuning each level of the classifier, better recognition rates than traditional primary classification are obtained. This paper introduces label information for supervised training to further improve the features of multifunctional fusion music. Experiments show that this information has excellent performance in multifunctional fusion music recognition. The experiments compare the multilevel classifier with primary classification, and the multilevel classification with the primary classification and the classification performance is improved, and the recognition rate of the multilevel classification algorithm is also improved over the multilevel classification algorithm, proving that the excellent performance with multiple levels of classification.

Suggested Citation

  • Tianzhuo Gong & Wei Wang, 2021. "Deep Belief Network-Based Multifeature Fusion Music Classification Algorithm and Simulation," Complexity, Hindawi, vol. 2021, pages 1-10, January.
  • Handle: RePEc:hin:complx:8861896
    DOI: 10.1155/2021/8861896
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8861896.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/8861896.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/8861896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8861896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.