IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8847703.html
   My bibliography  Save this article

Residual Lifetime Prediction with Multistage Stochastic Degradation for Equipment

Author

Listed:
  • Zhan Gao
  • Qi-guo Hu
  • Xiang-yang Xu

Abstract

Residual useful lifetime (RUL) prediction plays a key role of failure prediction and health management (PHM) in equipment. Aiming at the problems of residual life prediction without comprehensively considering multistage and individual differences in equipment performance degradation at present, we explore a prediction model that can fit the multistage random performance degradation. Degradation modeling is based on the random Wiener process. Moreover, according to the degradation monitoring data of the same batch of equipment, we apply the expectation maximization (EM) algorithm to estimate the prior distribution of the model. The real-time remaining life distribution of the equipment is acquired by merging prior information of real-time degradation data and historical degradation monitoring data. The accuracy of the proposed model is demonstrated by analyzing a practical case of metalized film capacitors, and the result shows that a better RUL estimation accuracy can be provided by our model compared with existing models.

Suggested Citation

  • Zhan Gao & Qi-guo Hu & Xiang-yang Xu, 2020. "Residual Lifetime Prediction with Multistage Stochastic Degradation for Equipment," Complexity, Hindawi, vol. 2020, pages 1-10, November.
  • Handle: RePEc:hin:complx:8847703
    DOI: 10.1155/2020/8847703
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8847703.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8847703.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8847703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thirupathi Samala & Vijaya Kumar Manupati & Bethalam Brahma Sai Nikhilesh & Maria Leonilde Rocha Varela & Goran Putnik, 2021. "Job Adjustment Strategy for Predictive Maintenance in Semi-Fully Flexible Systems Based on Machine Health Status," Sustainability, MDPI, vol. 13(9), pages 1-20, May.
    2. Mukhopadhyay, Koushiki & Liu, Bin & Bedford, Tim & Finkelstein, Maxim, 2023. "Remaining lifetime of degrading systems continuously monitored by degrading sensors," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Liu, Shujie & Fan, Lexian, 2022. "An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8847703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.