IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8838468.html
   My bibliography  Save this article

Analysis and Simulation of the Early Warning Model for Human Resource Management Risk Based on the BP Neural Network

Author

Listed:
  • Xue Yan
  • Xiangwu Deng
  • Shouheng Sun

Abstract

Human resource management risks are due to the failure of employer organization to use relevant human resources reasonably and can result in tangible or intangible waste of human resources and even risks; therefore, constructing a practical early warning model of human resource management risk is extremely important for early risk prediction. The back propagation (BP) neural network is an information analysis and processing system formed by using the error back propagation algorithm to simulate the neural function and structure of the human brain, which can handle complex and changeable things that do not have an obvious linear relationship between output results and input factors, so as to find the objective connection between the two. Based on the summary and analysis of previous research works, this article expounded the research status and significance of early warning for human resource management risks, elaborated the development background, current status, and future challenges of the BP neural network, introduced the method and principle of the BP neural network’s connection weight calculation and learning training, performed the risk inducement analysis, index system establishment, and network node selection of human resource management, constructed an early warning model of human resource management risk based on the BP neural network, conducted the risk warning model training and detection based on the BP neural network, and finally carried out a simulation and its result analysis. The study results show that the early warning model of human resource management risk based on the BP network is effective, and this trained and tested BP network risk warning model can be used to conduct early warning empirical research on human resource risks to prevent human resource risks, ensure enterprise’s benign operation, and at the same time play a role in supervision and promotion of market order rectification.

Suggested Citation

  • Xue Yan & Xiangwu Deng & Shouheng Sun, 2020. "Analysis and Simulation of the Early Warning Model for Human Resource Management Risk Based on the BP Neural Network," Complexity, Hindawi, vol. 2020, pages 1-11, November.
  • Handle: RePEc:hin:complx:8838468
    DOI: 10.1155/2020/8838468
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8838468.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8838468.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8838468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Yu & Lujie Zhou & Pingping Liu & Jing Chen & Dejun Miao & Jiansheng Wang, 2022. "Research on a Risk Early Warning Mathematical Model Based on Data Mining in China’s Coal Mine Management," Mathematics, MDPI, vol. 10(21), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8838468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.