IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8834941.html
   My bibliography  Save this article

Evaluation and Prediction of Wind Power Utilization Efficiency Based on Super-SBM and LSTM Models: A Case Study of 30 Provinces in China

Author

Listed:
  • Chengyu Li
  • Qunwei Wang
  • Peng Zhou

Abstract

Although China’s wind industry has made great progress in recent years, the wind abandonment phenomenon caused by the unbalanced development of regional wind power is still prominent. It is particularly important for the scientific development of wind power to accurately measure the utilization efficiency of wind power and understand its regional differences in China. This study establishes the improved super-efficiency slack-based measure (Super-SBM) model and long short-term memory (LSTM) network models, systematically and comprehensively measures and predicts the wind power utilization efficiency of 30 regions in China from 2013 to 2020, and explores regional differences in wind power utilization efficiency. Our results show the following: (1) China’s overall wind power utilization efficiency is relatively low but has been on a steady upward trend since 2013. (2) Regional differences are obvious, showing that the spatial distribution pattern of wind power utilization efficiency is greatest in Northeast China, followed by North China, East China, South China, Northwest China, and Central China. The “Three-North” region with abundant wind energy resources has relatively high wind power utilization efficiency and exhibits a good development trend. East China, South China, and Central China, where wind energy resources are relatively poor, have low wind power utilization efficiency, and their development trends are not stable and are more prone to change. (3) The utilization efficiency of wind power in coastal areas is generally better than that in inland areas. There are also differences among the thirty Chinese regions studied. Inner Mongolia and Shandong have achieved real efficiency in wind power utilization efficiency, with optimal allocation of input and output, and a good development trend. The other 28 regions have varying degrees of inefficiency, and there is still room for improvement.

Suggested Citation

  • Chengyu Li & Qunwei Wang & Peng Zhou, 2020. "Evaluation and Prediction of Wind Power Utilization Efficiency Based on Super-SBM and LSTM Models: A Case Study of 30 Provinces in China," Complexity, Hindawi, vol. 2020, pages 1-13, November.
  • Handle: RePEc:hin:complx:8834941
    DOI: 10.1155/2020/8834941
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8834941.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8834941.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8834941?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyan Sun & Wenwei Lian & Hongmei Duan & Anjian Wang, 2021. "Factors Affecting Wind Power Efficiency: Evidence from Provincial-Level Data in China," Sustainability, MDPI, vol. 13(22), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8834941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.