IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8834908.html
   My bibliography  Save this article

Personalized News Recommendation and Simulation Based on Improved Collaborative Filtering Algorithm

Author

Listed:
  • Kunni Han

Abstract

Faced with massive amounts of online news, it is often difficult for the public to quickly locate the news they are interested in. The personalized recommendation technology can dig out the user’s interest points according to the user’s behavior habits, thereby recommending the news that may be of interest to the user. In this paper, improvements are made to the data preprocessing stage and the nearest neighbor collection stage of the collaborative filtering algorithm. In the data preprocessing stage, the user-item rating matrix is filled to alleviate its sparsity. The label factor and time factor are introduced to make the constructed user preference model have a better expression effect. In the stage of finding the nearest neighbor set, the collaborative filtering algorithm is combined with the dichotomous K-means algorithm, the user cluster matching the target user is selected as the search range of the nearest neighbor set, and the similarity measurement formula is improved. In order to verify the effectiveness of the algorithm proposed in this paper, this paper selects a simulated data set to test the performance of the proposed algorithm in terms of the average absolute error of recommendation, recommendation accuracy, and recall rate and compares it with the user-based collaborative filtering recommendation algorithm. In the simulation data set, the algorithm in this paper is superior to the traditional algorithm in most users. The algorithm in this paper decomposes the sparse matrix to reduce the impact of data sparsity on the traditional recommendation algorithm, thereby improving the recommendation accuracy and recall rate of the recommendation algorithm and reducing the recommendation error.

Suggested Citation

  • Kunni Han, 2020. "Personalized News Recommendation and Simulation Based on Improved Collaborative Filtering Algorithm," Complexity, Hindawi, vol. 2020, pages 1-12, October.
  • Handle: RePEc:hin:complx:8834908
    DOI: 10.1155/2020/8834908
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8834908.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8834908.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8834908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8834908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.