IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8829167.html
   My bibliography  Save this article

Moving Vehicle Tracking Optimization Method Based on SPF

Author

Listed:
  • Caixia Lv
  • Xuejing Zhang

Abstract

In the intelligent transportation system, the license information can be automatically recognized by the computer and the vehicle can be tracked. Red light running, illegal change of lanes, vehicle retrograde, and other illegal driving events are reasonably recorded. This is undoubtedly an effective help for the traffic police to relieve the huge work pressure. However, in China, a considerable number of vehicle tracking methods have certain limitations in resisting complex external environmental influences. The external environmental factors include but not limited to variable factors such as camera movement, jitter, and severe rain and snow. These factors cannot be controlled well, so the tracking accuracy is greatly reduced. In regard to this, this paper proposes an optimization method for moving vehicle tracking based on SPF. First, according to the size of the overlapping area of the motion area between the two images, the researcher can construct and simplify the vertex adjacency matrix that reflects the characteristics of the undirected bipartite graph. Then according to the corresponding relationship between the vertex adjacency matrix and the regional behavior and vehicle behavior, the researcher completes the regional behavior analysis and vehicle behavior analysis. On this basis, a particle filter vehicle tracking algorithm based on segmentation compensation is introduced, and the vector sum of the tracked segmentation area is used as the final position of the target vehicle. In this way, as many scattered particles fall on the target area as possible, which will greatly improve the efficiency of particle utilization, enhance tracking accuracy, and avoid the problem of tracking failure caused by too fast vehicle movement. Through experimental simulation, it can be seen that the method proposed in this paper can greatly enhance the vehicle tracking ability when tracking vehicles in “complex environments.”

Suggested Citation

  • Caixia Lv & Xuejing Zhang, 2020. "Moving Vehicle Tracking Optimization Method Based on SPF," Complexity, Hindawi, vol. 2020, pages 1-14, November.
  • Handle: RePEc:hin:complx:8829167
    DOI: 10.1155/2020/8829167
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8829167.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8829167.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8829167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8829167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.