IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8819745.html
   My bibliography  Save this article

Three-Dimensional Finite Element Numerical Simulation and Analysis of Solid-State Processing of Metal Material

Author

Listed:
  • Guang Su
  • Aimin Zhang

Abstract

Solid-state processing of metal material is a very complex physical and chemical process, which is coupled by a series of variations including heat transfer, momentum transfer, mass transfer, and phase change. Applying three-dimensional (3D) finite element numerical method to the simulation of solid-state processing can perform analysis of metal material’s forging processes before production trial production, can obtain their relevant information such as material flow law, temperature field, and strain field under the minimum physical test conditions, thereby predicting metal material’s forming defects and improving their forging quality. On the basis of summarizing and analyzing previous research works, this paper expounded the current status and significance of solid-state processing of metal materials, elaborated the development background, current status, and future challenges of 3D finite element numerical simulation, introduced the discrimination method and free surface solution method of numerical simulation calculation, conducted finite element model’s geometric assumptions, material selection, element division, model establishment, parameter selection, and initial and boundary condition determination, and simulated and analyzed rheological casting, remelting heating, thixoforming, and rotary piercing processes of metal materials. The results show that the 3D finite element numerical method can not only simulate various processes of flow field, temperature field, stress field, and microstructure in solid-state processing but also can provide a reliable basis for effectively obtaining a reasonable description and finding a more optimized design plan for metal material processing in a short time, which plays an important role in understanding and analyzing solid metal forming process, controlling and optimizing process parameters, guiding and mastering rheological casting, and secondary heating and rotary piercing of metal materials.

Suggested Citation

  • Guang Su & Aimin Zhang, 2020. "Three-Dimensional Finite Element Numerical Simulation and Analysis of Solid-State Processing of Metal Material," Complexity, Hindawi, vol. 2020, pages 1-12, November.
  • Handle: RePEc:hin:complx:8819745
    DOI: 10.1155/2020/8819745
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8819745.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8819745.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8819745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8819745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.