Author
Listed:
- Dong Zhong
- Yi-An Zhu
- Lanqing Wang
- Junhua Duan
- Jiaxuan He
Abstract
The information in the working environment of industrial Internet is characterized by diversity, semantics, hierarchy, and relevance. However, the existing representation methods of environmental information mostly emphasize the concepts and relationships in the environment and have an insufficient understanding of the items and relationships at the instance level. There are also some problems such as low visualization of knowledge representation, poor human-machine interaction ability, insufficient knowledge reasoning ability, and slow knowledge search speed, which cannot meet the needs of intelligent and personalized service. Based on this, this paper designs a cognitive information representation model based on a knowledge graph, which combines the perceptual information of industrial robot ontology with semantic description information such as functional attributes obtained from the Internet to form a structured and logically reasoned cognitive knowledge graph including perception layer and cognition layer. Aiming at the problem that the data sources of the knowledge base for constructing the cognitive knowledge graph are wide and heterogeneous, and there are entity semantic differences and knowledge system differences among different data sources, a multimodal entity semantic fusion model based on vector features and a system fusion framework based on HowNet are designed, and the environment description information such as object semantics, attributes, relations, spatial location, and context acquired by industrial robots and their own state information are unified and standardized. The automatic representation of robot perceived information is realized, and the universality, systematicness, and intuition of robot cognitive information representation are enhanced, so that the cognition reasoning ability and knowledge retrieval efficiency of robots in the industrial Internet environment can be effectively improved.
Suggested Citation
Dong Zhong & Yi-An Zhu & Lanqing Wang & Junhua Duan & Jiaxuan He, 2020.
"A Cognition Knowledge Representation Model Based on Multidimensional Heterogeneous Data,"
Complexity, Hindawi, vol. 2020, pages 1-17, December.
Handle:
RePEc:hin:complx:8812459
DOI: 10.1155/2020/8812459
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8812459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.