IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8812019.html
   My bibliography  Save this article

Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection

Author

Listed:
  • Iftikhar Ahmad
  • Muhammad Hamid
  • Suhail Yousaf
  • Syed Tanveer Shah
  • Muhammad Ovais Ahmad

Abstract

Vegetable and fruit plants facilitate around 7.5 billion people around the globe, playing a crucial role in sustaining life on the planet. The rapid increase in the use of chemicals such as fungicides and bactericides to curtail plant diseases is causing negative effects on the agro-ecosystem. The high scale prevalence of diseases in crops affects the production quantity and quality. Solving the problem of early identification/diagnosis of diseases by exploiting a quick and consistent reliable method will benefit the farmers. In this context, our research work focuses on classification and identification of tomato leaf diseases using convolutional neural network (CNN) techniques. We consider four CNN architectures, namely, VGG-16, VGG-19, ResNet, and Inception V3, and use feature extraction and parameter-tuning to identify and classify tomato leaf diseases. We test the underlying models on two datasets, a laboratory-based dataset and self-collected data from the field. We observe that all architectures perform better on the laboratory-based dataset than on field-based data, with performance on various metrics showing variance in the range 10%–15%. Inception V3 is identified as the best performing algorithm on both datasets.

Suggested Citation

  • Iftikhar Ahmad & Muhammad Hamid & Suhail Yousaf & Syed Tanveer Shah & Muhammad Ovais Ahmad, 2020. "Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection," Complexity, Hindawi, vol. 2020, pages 1-6, September.
  • Handle: RePEc:hin:complx:8812019
    DOI: 10.1155/2020/8812019
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8812019.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8812019.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8812019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bulent Tugrul & Elhoucine Elfatimi & Recep Eryigit, 2022. "Convolutional Neural Networks in Detection of Plant Leaf Diseases: A Review," Agriculture, MDPI, vol. 12(8), pages 1-21, August.
    2. Balaji Natesan & Anandakumar Singaravelan & Jia-Lien Hsu & Yi-Hsien Lin & Baiying Lei & Chuan-Ming Liu, 2022. "Channel–Spatial Segmentation Network for Classifying Leaf Diseases," Agriculture, MDPI, vol. 12(11), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8812019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.