IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8811407.html
   My bibliography  Save this article

A Short-Term Wind Speed Forecasting Hybrid Model Based on Empirical Mode Decomposition and Multiple Kernel Learning

Author

Listed:
  • Yuanyuan Xu
  • Genke Yang

Abstract

Short-term wind speed forecasting plays an increasingly important role in the security, scheduling, and optimization of power systems. As wind speed signals are usually nonlinear and nonstationary, how to accurately forecast future states is a challenge for existing methods. In this paper, for highly complex wind speed signals, we propose a multiple kernel learning- (MKL-) based method to adaptively assign the weights of multiple prediction functions, which extends conventional wind speed forecasting methods using a support vector machine. First, empirical mode decomposition (EMD) is used to decompose complex signals into several intrinsic mode function component signals with different time scales. Then, for each channel, one multiple kernel model is constructed for forecasting the current sequence signal. Finally, several experiments are carried out on different New Zealand wind farm data, and the relevant prediction accuracy indexes and confidence intervals are evaluated. Extensive experimental results show that, compared with existing machine learning methods, the EMD-MKL model proposed in this paper has better performance in terms of the prediction accuracy evaluation indexes and confidence intervals and shows a better ability to generalize.

Suggested Citation

  • Yuanyuan Xu & Genke Yang, 2020. "A Short-Term Wind Speed Forecasting Hybrid Model Based on Empirical Mode Decomposition and Multiple Kernel Learning," Complexity, Hindawi, vol. 2020, pages 1-13, November.
  • Handle: RePEc:hin:complx:8811407
    DOI: 10.1155/2020/8811407
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/8811407.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/8811407.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/8811407?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yuanyuan & Yang, Genke & Luo, Jiliang & He, Jianan & Sun, Haixin, 2022. "A multi-location short-term wind speed prediction model based on spatiotemporal joint learning," Renewable Energy, Elsevier, vol. 183(C), pages 148-159.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8811407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.